Error-prone translesion synthesis mediates acquired chemoresistance.

نویسندگان

  • Kun Xie
  • Jason Doles
  • Michael T Hemann
  • Graham C Walker
چکیده

The development of cancer drug resistance is a persistent clinical problem limiting the successful treatment of disseminated malignancies. However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. Error-prone translesional DNA synthesis (TLS) is known to underlie the mutagenic effects of numerous anticancer agents, but little is known as to whether mutation induced by this process is ultimately relevant to tumor drug resistance. Here, we use a tractable mouse model of B-cell lymphoma to interrogate the role of error-prone translesional DNA synthesis in chemotherapy-induced mutation and resistance to front-line chemotherapy. We find that suppression of Rev1, an essential TLS scaffold protein and dCMP transferase, inhibits both cisplatin- and cyclophosphamide-induced mutagenesis. Additionally, by performing repeated cycles of tumor engraftment and treatment, we show that Rev1 plays a critical role in the development of acquired cyclophosphamide resistance. Thus, chemotherapy not only selects for drug-resistant tumor population but also directly promotes the TLS-mediated acquisition of resistance-causing mutations. These data provide an example of an alteration that prevents the acquisition of drug resistance in tumors in vivo. Because TLS also represents a critical mechanism of DNA synthesis in tumor cells following chemotherapy, these data suggest that TLS inhibition may have dual anticancer effects, sensitizing tumors to therapy as well as preventing the emergence of tumor chemoresistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REV3L, the catalytic subunit of DNA polymerase ζ, is involved in the progression and chemoresistance of esophageal squamous cell carcinoma.

Protein reversionless 3-like (REV3L), the catalytic subunit of DNA polymerase (pol) ζ, is well known to participate in error-prone translesion synthesis (TLS) with less stringent and lower processivity. Recent evidence has demonstrated that REV3L is involved in carcinogenesis and tumor progression. However, the function of REV3L remains unclear in esophageal squamous cell carcinoma (ESCC). In t...

متن کامل

The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase

Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both bra...

متن کامل

Regulation of error-prone translesion synthesis by Spartan/C1orf124

Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone ...

متن کامل

Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.

Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase zeta (Polzeta) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is no...

متن کامل

Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells.

alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 48  شماره 

صفحات  -

تاریخ انتشار 2010